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Outline

•Forces and the Hellman-Feynman Theorem

•Stress (v. briefly)

•Techniques for minimizing a function

•Geometric optimization using forces

•Frozen Phonon Calculations

•Molecular Dynamics with forces (v. briefly)
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The Born-Oppenheimer 

Approximation 

Max Born (1882-1970) R. Oppenheimer (1904-1967)
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The Born-Oppenheimer 

Approximation 

• The many-particle wavefunction ψψψψ is a function of both 

nuclear and electronic coordinates.

• Separate out the Hamiltonian into a nuclear and 

electronic part.

• The wavefunction can then be written as:

• OK because electrons are much lighter than nuclei and 

therefore respond ‘instantly’ on time-scale of nuclear 

motion.

elecnuctot ψψ ×=Ψ
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Forces

• Need for geometry optimization and molecular dynamics.

• Can also use to get phonons.

• Could get as finite differences of total energy - too 

expensive!

• Use force (Hellmann-Feynman) theorem. 

• Richard Feynman’s Senior Thesis!   (when he was 21…) 
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Hellmann-Feynman Theorem

• Want to calculate force on ion I:

• Get three terms:

• When        is an eigenstate,

-Substitute this…
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Hellmann-Feynman Theorem (contd.)

• The force is now given by

• Note that we can now calculate the force from a calculation 
at ONE configuration alone – huge savings in time.

• If the basis depends on ionic positions (not true for plane 
waves), would have extra terms = Pulay forces.

• If        is not an exact eigenstate (electronic calculation not 
well converged), may get big errors in forces calculated 
using this prescription!
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Using H-F Theorem 

in a (plane-wave) DFT calculation

• Force on ion I given by:

where

=(pseudo)potential due to ion cores

and                   = interaction of ions with each other.
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Stress

• Strain:

• Stress:

• Stress Theorem (Nielsen & Martin, 1985) →
as for forces, can calculate at a single configuration.

• What if the primitive lattice vectors (specifying unit cell) 
are not optimal?
- Forces on atoms may = 0 
(e.g., an FCC crystal with wrong lattice constant)

- Stress will not be zero, however. 
< 0 → cell would like to expand.
> 0 → cell would like to contract.

(More in next lecture)
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Computing Forces & Stress with PWscf

tprnfor = .TRUE.

(Set automatically if 
calculation = ‘relax’ or ‘md’ or ‘vc-md’)

tstress = .TRUE.

(Set automatically if 
calculation = ‘vc-md’)
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Forces Obtained using PWscf

• e.g., for a point defect (vacancy) in graphene:

Kanchan Ulman
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What can one do with forces?

• Optimize ionic positions (geometric relaxation).

• Force constants, vibrational frequencies.

• Molecular dynamics.
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Geometric Relaxation
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Geometric Optimization

• Want to move the atomic positions around until the 

lowest-energy equilibrium configuration is obtained.

• At equilibrium,

for all I.

• We are searching for a minimum in a 3NI-dim space.
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Minimization

• Relevant to many parts of DFT calculations:

- Optimizing ionic positions

- Minimizing energy functional

- Diagonalizing Hamiltonian

- Achieving self-consistency (mixing)

A brief foray into numerical methods….

Convention: subscripts ↔ coordinates, superscripts ↔ iterations
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Minimization in 1-D using gradients

• Consider a function f(x); we want 
to find x0, the value of x where the 
function has its minimum value.

• Iterative methods: successive 
approximations x1, x2, x3,…xn…x0

• Can take several small downhill 
steps, in the direction opposite the 
gradient f ‘(xn).

• Might take a long time to 
converge.

)(')(1 nnnn xfxx β−=+

Note: need first derivatives
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Finding zeroes in 1-D: 

the Newton-Raphson Method

• Use information from first 

derivatives to make a series of 

guesses:
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Finding minimum in 1-D: 

the Newton-Raphson Method

• Looking for a minimum in f is equivalent to looking for a 

zero of f ‘.

• So replace f by f’ and f’ by f “ to get:

or sometimes: 
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Note: will converge in one step if  f ‘ is linear.

So will converge in one step if  f is quadratic.
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Minimization in an N-d space

• Consider a function f(x) of N variables x = x1, x2, … , xN

• The gradient  is ∇∇∇∇f(x). Note that at a given x, this 

points in direction of maximum increase of f(x) .

• Want to find x0 s.t. f(x) has its minimum value at x0, i.e., 

∇∇∇∇f(x) = 0.

• Will find iteratively, through a sequence of points xn in 

the N-dimensional space that are stepping stones to 

finding x0.

• Convention: subscripts ↔ coordinates, superscripts ↔ iterations.
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Steepest Descent

� Keep going downhill in direction opposite local 
gradient.

� Could try taking lots of little downhill steps:

xn+1 = xn – β ∇∇∇∇f(xn) = xn + βgn

� Always, gn perpendicular to gn+1.

� Better: Once direction gn identified, do line 
minimization along it.

� Can be slow (may not reach minimum!)

� Problem: when moving along new direction, 

lose some minimization along old one(s).
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Second derivatives in an N-d space:

� The Hessian is an N×N matrix, whose elements are 

given by:

� It gives information about the curvature of the function.

jiij xxfH ∂∂∂= /)(2
x
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Newton-Raphson Minimization in N-d
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Need to compute gradients

and inverse Hessians

1-d N-d
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Need first derivatives

and second derivatives
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Quasi-Newton-Raphson Methods

• We had:

• But H-1 may be hard/expensive to compute directly.

• Instead, build up estimates for H-1 by analyzing 

successive gradient vectors.

• Various prescriptions for doing this, e.g., Broyden

method, BFGS method.

)()]([ 11 nnnn f xxHxx ∇−= −+ β
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BFGS Minimization

• Broyden, Fletcher, Goldfarb, Shanno (1970).
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Inverse Hessian approximated as:

where

)()( 1−∇−∇≡ nnn xfxfγ and )()]([ 1 nnn f xxHs ∇≡ −

(No doubt you will agree that this is a good point at which to end our 

foray into numerical methods…)

Newton-Raphson
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Back to the Problem of Ionic Relaxation

• Function f to be minimized is total energy Etot .

• Points x in  3NI-d space correspond to set of ionic 

coordinates (x1, y1, z1, x2, y2, z2,…xNI, yNI, zNI).

• Gradients ∇∇∇∇f(x) correspond to set of 3 components of 

forces on the NI ions.

• Forces can be computed using Hellmann-Feynman 

theorem.

• Now use a minimization scheme to find the ionic 

positons that give the lowest value of Etot, which is also 

when the forces on all ions are (close to) zero.
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An Outer Loop: Ionic Relaxation

Forces =0?

Move

ions

Structure Optimized!

Inner SCF loop

for electronic

iterations

Outer loop

for ionic

iterations
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Ionic Relaxation in PWscf

&control

calculation = ‘relax’
.
.
.

ion_dynamics = ‘bfgs’

‘damp’

•Tell the program to carry out ionic relaxation, and 

say which method to use to find minimum

(will be discussed in

next lecture)
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Ionic Relaxation in PWscf (contd.)

•Say which atoms are to be moved & in which directions.

•e.g., for a four-layer Al(001) slab:

ATOMIC_POSITIONS

Al  0.000 0.000 2.828 0 0 1

Al  0.500 0.500 2.121 0 0 1

Al  0.000 0.000 1.414 0 0 0

Al  0.500 0.500 0.707 0 0 0

Allow these 

atoms to move 

only along z

Fix these atoms
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Equilibrium Geometries

• In some cases, there are lots of equilibrium 

geometries (corresponding to local minima in the 

energy landscape).

• Finding the global minimum can be challenging!

N

Rh

O

e.g., NO adsorbed on a 5-atom Rh cluster:

Ghosh, Pushpa, de Gironcoli & Narasimhan
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Force Constants and 

Vibrational Frequencies
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The Vibrational Frequency of a 

Diatomic Molecule

• Can obtain from energies or from forces:

e.g., for CO:

Sananda Biswas
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What about a triatomic molecule?

• More useful to have forces than only total energy…
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“Frozen-Phonon” Calculations

• Take “snapshots” of a crystal as it is vibrating in a 
particular mode.

• Use Hellmann-Feynman theorem to compute forces as 
a function of displacement.

• Force vs. displacement gives phonon frequency.

• Note: Can instead use density functional perturbation 
theory (tomorrow!)
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The Force-Constant Tensor

Φα,β (Ri-Rj) ∼ force induced on atom j in direction β,

upon moving atom i in direction α

Can be obtained easily if forces can be computed.
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Getting Phonon Frequencies

• Dynamical Matrix:

• Diagonalize to get phonon frequencies:
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Molecular Dynamics



Shobhana Narasimhan, JNCASR 37

Forces and Motion

• Newton’s equations of motion: 

• If forces can be computed, can integrate these to get 

ionic positions as a function of time.

• Molecular Dynamics (next week…)
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The End!

May the Force Be With You….


